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1 INTRODUCTION

This document is the final report of a two-year CERTS (Consortium for Electric
Reliability Technology Solutions) project studying large-scale blackouts and
cascading failures of electric power transmission systems. The project is
devising new methods, models and analysis tools from complex systems,
criticality, probability, and power systems engineering so that the risks of large
blackouts and cascading failures can be understood and mitigated from global
and top-down perspectives. The work was performed by close collaboration
between Oak Ridge National Laboratory and the Power Systems Engineering
Research Center at the University of Wisconsin-Madison.

Section 2 explains topics providing background to the project and sections 3 and
4 summarize the project achievements, deliverables and budget. The details of
the technical achievements of the project are documented in Section 6 and in
preprints available on the web at
http:/ /eceserv0.ece.wisc.edu/~dobson/home.html. A comprehensive review of
much of the project work is documented in section 6.4.

2 PROJECT BACKGROUND
2.1 GENERAL BACKGROUND

The United States electrical energy supply infrastructure is experiencing rapid
changes and will continue to be operated close to a stressed condition in which
there is substantial risk of cascading outages and blackouts. The rapid changes in
this highly complex system present significant challenges for maintaining its
operational stability and reliability.

Avoiding large blackouts and especially those involving most or all of an
entire interconnected power transmission system is vital to the United States.
Large blackouts typically involve complicated series of cascading rare events that
are hard to anticipate. The enormous number and rarity of possible events,
interactions and dependencies has previously made the analysis of large
blackouts intractable, except by an intricate case-by-case, postmortem analysis.
However, we can now exploit the new models and ideas we have previously
developed by CERTS to address the risk of large blackouts caused by cascading
failures.

In the past we the focus of our work has been the development of models
to study blackout dynamics in the power transmission grid. We have developed
the OPA model that incorporates self-organization processes based on the
engineering response to blackouts and the long-term economic response to
customer load demand. It also incorporates the apparent critical nature of the
transmission system. The combination of these mechanisms leads to blackouts
that range in size from single load shedding to the blackout of the entire system.
This model shows a probability distribution of blackout sizes with power tails
similar to that observed in NERC blackout data from North America.



We have developed a probabilistic model of cascading failure called
CASCADE. CASCADE shows a critical threshold in the overall system loading
that leads to large cascading failures. The corresponding threshold in the power
system is a threshold in overall system loading or stress that gives a sharply
increased risk of large blackouts. This type of threshold has been observed in the
OPA power system models and operation near this threshold is consistent with
the NERC data. However, this threshold is not well understood in OPA or in
real systems, and the parameters controlling it are not easy to identify.
Moreover, practical methods to monitor the proximity of the power system to
this threshold to assess the risks of large blackouts have not been developed.

We have also developed an approximation to the CASCADE model using the
theory of branching processes that yields further insights into cascading failure.
The branching process model opens the door to measuring the system overall
stress with respect to the extent to which failures propagate after they are
started.

One perspective is that in the past, the n-1 criterion and generous
operating margins were used to provide some protection against cascading
failure and large blackouts. Economic and competitive pressures are now
inexorably causing changes in these practices and we seek to assess the risks of
these evolving practices with respect to cascading failure. Assessing and
mitigating the risk of large blackouts from a global, complex systems perspective
is preferable to the direct experimental approach of waiting for large blackouts
to occur and then reacting exclusively on a case-by-case basis.

2.2 BLACKOUT RISK ANALYSIS AND POWER TAILS

Figure 1 shows power tails in NERC blackout data. Note that a straight line on a
log-log plot such as Figure 1 yields a power law relation between the variables
with the exponent given by the line slope. This section, which is based on
[Carreras03], reviews some of the consequences of this for blackout risk analysis,
because this underpins much of the project work.

To evaluate the risk of a blackout, we need to know both the frequency of the
blackout and its costs. It is difficult to determine blackout costs, and there are
several approaches to estimate them, including customer surveys, indirect
analytic methods, and estimates for particular blackouts [Billington96]. The
estimated direct costs to electricity consumers vary by sector and increase with
both the amount of interrupted power and the duration of the blackout.
[Billington87] defines an interrupted energy assessment rate IEAR in dollars per
kilowatt-hour that is used as a factor multiplying the unserved energy to
estimate the blackout cost. That is, for a blackout with size measured by
unserved energy S,

direct costs = (IEAR) S $ (1)

There are substantial nonlinearities and dependencies not accounted for in
Eq. (1), but expressing the direct costs as a multiple of unserved energy is a
commonly used crude approximation. However, studies of individual large



blackouts suggest that the indirect costs of large blackouts, such as those
resulting from social disorder, are much higher than the direct costs. Also, the
increasing and complicated dependencies of other infrastructures mentioned
earlier on electrical energy tend to increase the costs of all blackouts [Rinaldi01],
[NERCO1].

For our purposes, let the frequency of a blackout with unserved energy S be
F(S) and the cost of the blackout be C(S). The risk of a blackout is then the
product of blackout frequency and cost:

risk = F(S) C(S)

The NERC data indicate a power law scaling of blackout frequency with blackout
unserved energy as

E(S) ~ §°

where a ranges from -0.6 to -1.9. If we take a = -1.2, and only account for the
direct costs in C(S) according to (1), then

risk ~ S92

This gives a weak decrease in risk as blackout size increases, which means that
the total cost of blackouts is very heavily dominated by the largest sizes. If we
also account for the indirect costs of large blackouts, we expect an even stronger
weighting of the cost for larger blackouts relative to smaller blackouts. From this
one can clearly see that, although large blackouts are much rarer than small
blackouts, the total risk associated with the large blackouts is much great than
the risk of small blackouts.

In contrast, consider the same risk calculation if the blackout frequency
decreases exponentially with size so that

F(S)=A"
With the simple accounting for direct costs only, we get
risk ~SA®

for which the risk peaks for blackouts of some intermediate size and decreases
exponentially for larger blackouts. Then, unless one deals with an unusual case
in which the peak risk occurs for blackouts comparable to the network size, we
expect the risk of larger blackouts to be much smaller than the peak risk. This is
likely to remain true even if the indirect blackout costs are accounted for unless
they are very strongly weighted (exponentially, for example) toward the large
sizes.

While there is some uncertainty in assessing blackout costs, and especially the
costs of large blackouts, the analysis above suggests that, when all the costs are
considered, power tails in the blackout size frequency distribution will cause the
risk of large blackouts to exceed the risk of the more frequent small blackouts.
This is strong motivation for investigating the causes of power tails.



We now put the issue of power tails in context by discussing other aspects of
blackout frequency that impact risk. The power tails are of course limited in
extent in a practical power system by a finite cutoff near system size
corresponding to the largest possible blackout. More importantly, the frequency
of smaller blackouts and hence the shape of the frequency distribution away
from the tail impacts the risk. Also significant is the absolute frequency of
blackouts. When we consider the effect of mitigation on blackout risk, we need
to consider changes in both the absolute frequency and the shape of the blackout
frequency distribution. That is, rather than seeking to deterministically avoid all
blackouts (which may be unachievable and is certainly too costly), a better
question is: How do we assess and manage the risk of all sizes of blackouts?
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Figure 1. PDF of blackout sizes (MWh lost) compared to PDF of
avalanche sizes from an SOC sand pile system.



2.3 SUMMARY OF MAIN IDEAS

This section summarizes some of the main ideas of the project that are
foundations of the current work.

(1) Instead of looking at the details of particular blackouts, study the statistics,
dynamics and risk of series of blackouts with approximate global models.

(2) 15 years of NERC blackout data yields a probability distribution of blackout
sizes with a power tail. Thus large blackouts are much more likely than expected
and, when costs are considered, their risk is comparable to the risk of small
blackouts. The data also suggests North American grid operation near a critical
point.

(3) Imagine increasing power system load from zero (independent failures and
negligible chance of large blackout) to emergency loading of all components
(certain cascading failure). We think there is a critical loading (phase transition) in
between these extremes at which there is a sharply increased chance of cascading
failure. Our models show power tails at this critical point.

(4) The practical implications of the critical loading are that we need ways to
estimate the closeness to this critical loading in order to manage the risk of large
blackouts by operating the power system with a suitably low risk of cascading
failure. Therefore the current thrust of the project is to devise practical methods
of monitoring or assessing criticality of the power system.

(5) There are a huge number of possible combinations of foreseeable and
unforeseeable multiple contingencies that can lead to cascading failure. While it
is definitely good practice to mitigate the most likely of the foreseeable
contingencies, in this project we focus on the complementary problem of
assessing the overall system stress that can cause failures to propagate after they
are started.

(6) Load growth at 2% per year reduces power system margins of operation
whereas the engineering responses to blackouts (caused by small margins)
increase margins. These opposing forces could dynamically self-organize the
system to the critical point. Mitigation of blackout risk should take care to
account for counter-intuitive effects in complex self-organized critical systems.
For example, suppressing small blackouts could lead the system to be operated
closer to the edge and ultimately increase the risk of large blackouts.



3 PROJECT ACHIEVEMENTS

3.1 MAIN ACCOMPLISHMENTS

This section summarizes the main accomplishments of the project. A detailed
technical account of these accomplishments can be found in the papers reprinted
in section 6 and in the preprints that are available at
http:/ /eceserv0.ece.wisc.edu/~dobson/home.html. A summary of these
accomplishments organized by project task can be found in section 3.2.

It is convenient to first list the three main models developed and used in the
project so that they can be identified briefly in the sequel:

* OPA model. OPA is a software code to study the dynamics of power system
blackouts. OPA models the cascading failures of the power system using DC
load flow and LP dispatch and includes long term dynamics of load growth
and power system improvement in response to blackouts. OPA was
developed by ORNL, PSerc at Wisconsin and University of Alaska and was
extensively developed in the previous CERTS project.

* CASCADE model. CASCADE is a simple analytically solvable model to
study basic features of probabilistic cascading failure. CASCADE was
developed from scratch by the previous CERTS project.

* branching process model.  The branching process model is a simple
analytically solvable model that approximates CASCADE.

The main accomplishments are:

* We analyzed the criticality condition yielding power tails in the distribution of
the number of failures in the CASCADE model. This was done by
approximating the CASCADE model as a branching process [see section 6.1].
The criticality parameter measures the propagation of failures during the
cascade and the proximity of the system to a high risk of cascading failure.
The approximation was generalized to the more realistic case of limited
component interactions [see section 6.3]. The branching process
approximation opens up possibilities for analyzing, quantifying and
monitoring the risk of large cascading failures. In particular, the value of
failure propagation A can be linked to risk of blackouts of all sizes [see section
6.6].

* Progress was made in identifying and obtaining the criticality parameter
using data from the OPA blackout simulation [see sections 6.2 and 6.5]. This
allows the comparison of the OPA and CASCADE model and gives insights
into both models, particularly the limitations in the CASCADE model that
have to be addressed when applying a branching process perspective.



Branching process models were proposed for the exponentially increasing
portions of real blackouts and some initial methods of fitting the models to
real blackout data were proposed and illustrated using data from WSCC
blackouts [see section 6.10]. Further work will require access to summary
data from the August 2003 blackout and this data has been requested from
DOE. A start has been made on proposing and assessing the feasibility of
real-time monitoring methods [see section 6.10], but much more exploration
is needed to assess initial feasibility.

Progress was also made in proposing ways of statistically estimating
propagation of failures A from general data. As well as the work described
above [see sections 6.2, 6.3, 6.5] another possible statistic for A was proposed
and a method to find the criticality point by Monte Carlo simulation were
outlined [see section 6.6]. These are all steps towards understanding criticality
and developing methods to measure the criticality parameter from
simulations and real data.

The mathematical foundations of the CASCADE model and connections to
models of branching processes, queues, random graphs, stochastic process
fluctuations and epidemics were established and documented
[DobsonPEIS05]. The generalized multinomial joint distribution of the
number of failures in each stage was derived. The description and
derivations of the CASCADE model were simplified and improved.

The effect of grid upgrade strategies such as increasing component reliability
and redundancy on the complex system dynamics of the transmission grid
were studied [see section 6.7]. Some of the long-term effects on blackout risk
were counter-intuitive, suggesting that care should be taken in planning
upgrades in the light of complex system dynamics.

Work on detecting criticality in a blackout simulation model that represents
hidden failures in the protection system and exploring mitigation methods to
shape the probability distribution of blackout sizes was completed and a
journal paper is being published [Chen05]. This completes joint work with
PSerc at Cornell University that was recently funded under CERTS.

Joint work with University of Alaska was done on modeling cascading failure
in interdependent infrastructures and on human factors in risk [see sections
6.8 and 6.9]. The models developed for the interdependent infrastructure
generalize branching and complex systems models in the project in ways that
are expected to be useful for blackout modeling. Moreover, a start on the
human factors in risk is needed as an important but poorly modeled key
factor in blackout risk and perception of blackout risk.

Media interest in cascading failure blackouts and complex systems aspects
after the August blackout led to quotes and background provided to over a
dozen newspaper articles and appearances on NPR radio and ABC Nightline.
Project research results were featured in Nature, National Post, Energia, and



in lead articles in SIAM News and IEEE Spectrum. These articles may be
accessed at t he website
http:/ / eceserv0.ece.wisc.edu/~dobson/complexsystemsresearch.html

The project work on electrical blackouts was recognized as one of DOE Office
of Science Programs’ Top Achievements in 2003.

The project work on the distribution of blackout size as a result of complex
systems effects has been identified as significant in assessing the risk of loss of
offsite power for nuclear power plants [Raughley04]. Ben Carreras has been
advising the U.S. Nuclear Regulatory Commission to assist this analysis.

Substantial progress in establishing methods of cascading failure analysis and
complex systems analysis were made. Four journal papers in electrical and
systems engineering, physics, and probability journals were produced
[CarrerasCAS04, CarrerasCHAOS04, DobsonPEIS05, Chen05] and many
presentations were given at conferences and to industry. Collaboration with
a consulting company was established and pursued and several proposals
were made to industry and an ISO jointly with the consulting company. A
session on cascading failure blackouts was organized at the PMAPS
conference that brought together for the first time international researchers
working on this topic. Lectures on the project material were presented to
industry at the EEI Market Design & Transmission Pricing School, the
Institute for Asset Management in Britain, and at a PSerc meeting. These
activities are all intended to multiply the effectiveness, leverage, and impact
of the project in a variety of industrial, academic, national and international
contexts.

Since the OPA model does not currently represent some of the factors that
may be significant in cascading failure interactions, we established a
collaboration with the University of Manchester to test their cascading failure
model [Kirschen04, Rios02] for criticality. This collaboration has a paper in
progress to be submitted to the 2005 PSCC conference. Researchers at
Carnegie-Mellon also reported criticality phenomenon in their cascading
failure model [LiaoCMUO04] and we are also starting to collaborate with them
and Towa State under PSerc to investigate this. Strong interest has been
expressed by PSerc industry members. Upgrade of OPA is planned for next
year as outlined in section 3.6.3

A web page to briefly explain the project results and give access to a selection
of papers was set up at
http:/ / eceserv0.ece.wisc.edu/~dobson/complexsystemsresearch.html



3.2 ACCOMPLISHMENTS BY TASKS

This section summarizes the project accomplishments for the two years
according to the planned tasks.

Task 1: Document explorations of blackout risk analysis and mitigation in
complex system simulations

(a) Progress was made in identifying and obtaining the criticality
parameter using data from the OPA blackout simulation. The criticality
parameter determines how close the power system is to a significant risk of
cascading failure and its determination from data could be used to monitor the
risk of cascading failure. This work was documented in an initial conference
paper [see section 6.2].

(b) Work on detecting criticality in a blackout simulation model that
represents hidden failures in the protection system and exploring mitigation
methods to shape the probability distribution of blackout sizes was completed
and documented in the journal paper [Chen05].

(c) The media showed great interest in complex systems approach to
blackout risk and mitigation. The CERTS team provided information about this
research topic to reporters so that it could get public exposure and to contribute
to the public information relevant to the August 2003 blackout. The December
2003 issue of SIAM news headlined an article on complex systems applied to
blackouts that extensively described the project work in blackout risk analysis
and mitigation [Robinson03]. (SIAM is the Society for Industrial and Applied
Mathematics). The August 2004 issue of IEEE Spectrum lead article discussed the
complex systems work of the project in some detail and contrasted the project
work with other approaches [Fairley04].

(d) Extending and documenting the work on blackout risk mitigation
using OPA is Task 4.

Task 2: Document the properties of a general cascading failure model

(a) The general cascading failure model CASCADE has been carefully
stated and formulas for the probability distribution of the number of failures has
been rigorously derived by two methods. The connections to known
mathematics have been elucidated; it turns out that the cascading failure model is
a new application and generalization of a quasibinomial distribution. The
quasibinomial distribution has appeared in problems involving queues,
epidemics and random mappings. Establishing the analysis and related
applications of the cascading failure model is foundational for understanding the
model and for effective further exploitation of the model. This work is
documented in the journal paper [DobsonPEIS05].



(b) We approximated the CASCADE model as a branching process to give
insight into the propagation of failures. The approximation and the implications
for risk analysis of cascading failure were documented in an initial conference
paper [see section 6.1]. The approximation was generalized to the more realistic
case of limited component interactions and this was documented in another
conference paper [see section 6.3].

(c) Analysis of the criticality conditions in the CASCADE model is task 5.

Task 3: Project first year report
The first year report was produced and is available in pdf format on the CERTS
website.

Task 4: Document blackout risk mitigation using OPA

The effect of grid upgrade strategies such as increasing component reliability and
redundancy on the complex system dynamics of the transmission grid were
studied [see section 6.7]. Some of the long-term effects on blackout risk were
counter-intuitive, suggesting that care should be taken in planning upgrades in
the light of complex system dynamics. A journal paper submission on task 4 is
planned but not yet completed. Work on blackout risk mitigation in another
blackout simulation model that represents hidden failures in the protection
system and exploring mitigation methods to shape the probability distribution of
blackout sizes was completed and a journal paper is being published [Chen05].
This completes joint work with PSerc at Cornell University that was recently
funded under CERTS.

Task 5: Analyze criticality conditions in CASCADE model

Much of the work on this task was directed towards approximating the CASCADE
model with a branching process and analyzing the branching process. One of the
criticality conditions for the CASCADE model shows up in the branching process
approximation as the failure propagation parameter A and several papers have
explored ways to compute A from CASCADE, OPA and real blackout data [see sections
6.2, 6.5, and 6.6]. Some work on an interpretation of the structure of criticality in
CASCADE from the point of view of thermodynamics has been done.

Task 6: Understand criticality conditions in OPA model

Work further to that in Task 2(b) was done in relating the OPA criticality to CASCADE
criticality [see section 6.5]. Also a straightforward method to find the criticality point by
Monte Carlo simulation was outlined [see section 6.6]. Since the OPA model does not
currently represent some of the factors that may be significant in cascading failure
interactions, we established a collaboration with the University of Manchester to test
their cascading failure model [Kirschen04, Rios02] for criticality. This collaboration has a
paper in progress to be submitted to the 2005 PSCC conference. Researchers at
Carnegie-Mellon also reported criticality phenomenon in their cascading failure model
[LiaoCMUO04] and we are also starting to collaborate with them and Iowa State under
PSerc to investigate this. Strong interest has been expressed by PSerc industry
members. Upgrade of OPA is planned for next year as outlined in section 3.6.3.



Task 7: Final report
This report is the final report.



3.3 PROJECT COORDINATION

The project is led by Ian Dobson and involves a team of researchers at
PSerc at Wisconsin and ORNL. Close collaboration with Dr. David Newman at
the Physics department in the University of Alaska-Fairbanks is ongoing. The
project team has a substantial history of productive collaboration and is
producing results in close collaboration and papers with joint authorship
[BhattHICSS05, Carreras00, CarrerasOla, Carreras0Olb, Carreras02,
CarrerasCHAQOSO02, Carreras03, CarrerasCHAOS04, CarrerasCAS04, Carreras04,
Dobson01, Dobson02, DobsonCHINAO02, Dobson03, Dobson04, DobsonISCAS04,
DobsonPEIS05, DobsonCMUO04, DobsonHICSS05, NewmanCMUO04,
NewmanHICSS05].

Team communication is a judicious combination of email, phone, and face-to-face
meetings. The team members meet for about three days about every four
months.



3.4 PAPERS AND PRESENTATIONS

The following papers document in detail much of the technical progress on the
project. The 2004 and January 2005 conference papers and 2004 journal papers
are reprinted in section 6. The 2005 journal papers are not reprinted in this
report. However, preprints of the 2005 journal papers are posted on the website
at http:/ / eceserv0.ece.wisc.edu/~dobson/home.html.

The following journal papers were produced:

Evidence for self-organized criticality in a time series of electric power system
blackouts

B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole

IEEE Transactions on Circuits and Systems Part I

volume 51, no 9, September 2004, pp 1733-1740

(reprinted in section 6.11)

Abstract: We analyze a 15-year time series of North American electric power
transmission system blackouts for evidence of self-organized criticality. The
probability distribution functions of various measures of blackout size have a
power tail and R/S analysis of the time series shows moderate long time
correlations. Moreover, the same analysis applied to a time series from a
sandpile model known to be self-organized critical gives results of the same
form. Thus the blackout data seem consistent with self-organized criticality. A
qualitative explanation of the complex dynamics observed in electric power
system blackouts is suggested.

Complex dynamics of blackouts in power transmission systems
B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman

Chaos: An Interdisciplinary Journal of Nonlinear Science
volume 14, no 3, September 2004, pp 643-652

(reprinted in section 6.12)

Abstract: A model has been developed to study the global complex dynamics of
a series of blackouts in power transmission systems. This model includes a
simple level of self-organization by incorporating the growth of power demand,
the engineering response to system failures, and the upgrade of the generator
capacity. Two types of blackouts have been identified with different dynamical
properties. One type of blackout involves loss of load due to transmission lines
reaching their load limits but no line outages. The second type of blackout is
associated with multiple line outages. The dominance of one type of blackouts
versus the other depends on operational conditions and the proximity of the
system to one of its two critical points. The model shows a probability
distribution of blackout sizes with power tails similar to that observed in real
blackout data from North America.



Cascading dynamics and mitigation assessment in power system disturbances
via a hidden failure model

J. Chen, J.S. Thorp, I. Dobson

to appear in

International Journal of Electrical Power and Energy Systems in 2005.
preprint available at http:/ /eceserv0.ece.wisc.edu/~dobson/home.html

Abstract: A hidden failure embedded DC model of power transmission systems
has been developed to study the observed power tails of North American
blackout data. We investigate the impacts of several model parameters on the
global dynamics and evaluate possible mitigation measures. The main
parameters include system loading level, hidden failure probability, spinning
reserve capacity and control strategy. The sensitivity of power-law behavior
with respect to each of these parameters and the possible blackout mitigation are
discussed and illustrated using simulation results from the WSCC 179-bus
equivalent system and IEEE 118-bus test system. It is our intention that the study
can provide guidance on when and how the suggested mitigation methods
might be effective.

A loading-dependent model of probabilistic cascading failure

I. Dobson, B.A. Carreras, D.E. Newman

to appear in

Probability in the Engineering and Informational Sciences

vol. 19, no. 1, Jan 2005, pp. 15-32

preprint available at http:/ /eceserv0.ece.wisc.edu/~dobson/home.html

Abstract: We propose an analytically tractable model of loading-dependent
cascading failure that captures some of the salient features of large blackouts of
electric power transmission systems. This leads to a new application and
derivation of the quasibinomial distribution and its generalization to a saturating
form with an extended parameter range. The saturating quasibinomial
distribution of the number of failed components has a power law region at a
critical loading and a significant probability of total failure at higher loadings.

The following conference papers were produced.

A branching process approximation to cascading load-dependent system failure
I. Dobson, B.A. Carreras, D.E. Newman

Thirty-seventh Hawaii International Conference on System Sciences, Hawaii,
January 2004

(reprinted in section 6.1)

Abstract: Networked infrastructures operated under highly loaded conditions
are vulnerable to catastrophic cascading failures. For example, electric power
transmission systems must be designed and operated to reduce the risk of
widespread blackouts caused by cascading failure. There is a need for
analytically tractable models to understand and quantify the risks of cascading



failure. We study a probabilistic model of loading dependent cascading failure
by approximating the propagation of failures as a Poisson branching process.
This leads to a criticality condition for the failure propagation. At criticality there
are power tails in the probability distribution of cascade sizes and consequently
considerable risks of widespread catastrophic failure. Avoiding criticality or
supercriticality is a key approach to reduce this risk. This approach of
minimizing the propagation of failure after the cascade has started is
complementary to the usual approach of minimizing the risk of the first few
cascading failures. The analysis introduces a saturating form of the generalized
Poisson distribution so that supercritical systems with a high probability of total
failure can be considered.

Dynamical and probabilistic approaches to the study of blackout vulnerability
of the power transmission grid

B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson

Thirty-seventh Hawaii International Conference on System Sciences, Hawaii,
January 2004

(reprinted in section 6.2)

Abstract: The CASCADE probabilistic model for cascading failures gives a simple
characterization of the transition from an isolated failure to a system-wide
collapse as system loading increases. Using the basic ideas of this model, the
parameters that lead to a similar characterization for power transmission system
blackouts are identified in the OPA dynamical model of series of blackouts. The
comparison between the CASCADE and OPA models yields parameters that can
be computed from the OPA model that indicate a threshold for cascading failure
blackouts. This is a first step towards computing similar parameters for real
power transmission systems.

Probabilistic load-dependent cascading failure with limited component
interactions

I. Dobson, B.A. Carreras, D.E. Newman,

IEEE International Conference on Circuits & Systems, Vancouver, Canada, May
2004 (reprinted in section 6.3)

Abstract: We generalize an analytically solvable probabilistic model of cascading
failure in which failing components interact with other components by increasing
their load and hence their chance of failure. In the generalized model, instead of
a failing component increasing the load of all components, it increases the load of
a random sample of the components. The size of the sample describes the extent
of component interactions within the system. The generalized model is
approximated by a saturating branching process, and this leads to a criticality
condition for cascading failure propagation that depends on the size of the
sample. The criticality condition shows how the extent of component
interactions controls the proximity to catastrophic cascading failure. Implications
for the complexity of power transmission system design to avoid cascading
blackouts are briefly discussed.



Complex systems analysis of series of blackouts: cascading failure, criticality,
and self-organization

I. Dobson, B.A. Carreras, V.E. Lynch, D.E. Newman

IREP conference: Bulk Power System Dynamics and Control - VI, Cortina
d'Ampezzo, Italy, August 2004

(reprinted in section 6.4)

Abstract: We give a comprehensive account of a complex systems approach to
large blackouts caused by cascading failure. Instead of looking at the details of
particular blackouts, we study the statistics, dynamics and risk of series of
blackouts with approximate global models. North American blackout data
suggests that the frequency of large blackouts is governed by a power law. This
result is consistent with the power system being a complex system designed and
operated near criticality. The power law makes the risk of large blackouts
consequential and implies the need for nonstandard risk analysis.

Power system overall load relative to operating limits is a key factor affecting the
risk of cascading failure. Blackout models and an abstract model of cascading
failure show that there are critical transitions as load is increased. Power law
behavior can be observed at these transitions.

The critical loads at which blackout risk sharply increase are identifiable
thresholds for cascading failure and we discuss approaches to computing the
proximity to cascading failure using these thresholds. Approximating cascading
failure as a branching process suggests ways to compute and monitor criticality
by quantifying how much failures propagate.

Inspired by concepts from self-organized criticality, we suggest that power
system operating margins evolve slowly to near criticality and confirm this idea
using a blackout model. Mitigation of blackout risk should take care to account
for counter-intuitive effects in complex self-organized critical systems. For
example, suppressing small blackouts could lead the system to be operated
closer to the edge and ultimately increase the risk of large blackouts.

Estimating failure propagation in models of cascading blackouts

I. Dobson, B.A. Carreras, V.E. Lynch, B. Nkei, D.E. Newman

Eighth International Conference on Probability Methods Applied to Power
Systems, Ames Iowa, September 2004

(reprinted in section 6.5)

Abstract: We compare and test statistical estimates of failure propagation in data
from versions of a probabilistic model of loading-dependent cascading failure
and a power systems blackout model of cascading transmission line overloads.
The comparisons suggest mechanisms affecting failure propagation and are an
initial step towards monitoring failure propagation in practical system data.
Approximations to the probabilistic model describe the forms of probability
distributions of cascade sizes.



A criticality approach to monitoring cascading failure risk and failure
propagation in transmission systems

I. Dobson, B. A. Carreras, D. E. Newman

Electricity Transmission in Deregulated Markets, conference at Carnegie Mellon
University, Pittsburgh PA USA, December 2004

(reprinted in section 6.6)

Abstract: We consider the risk of cascading failure of electric power
transmission systems as overall loading is increased. There is evidence from
both abstract and power systems models of cascading failure that there is a
critical loading at which the risk of cascading failure sharply increases.
Moreover, as expected in a phase transition, at the critical loading there is a
power tail in the probability distribution of blackout size. (This power tail is
consistent with the empirical distribution of North American blackout sizes.)
The importance of the critical loading is that it gives a reference point for
determining the risk of cascading failure. Indeed the risk of cascading failure
can be quantified and monitored by finding the closeness to the critical
loading. This paper suggests and outlines ways of detecting the closeness to
criticality from data produced from a generic blackout model. The increasing
expected blackout size at criticality can be detected by computing expected
blackout size at various loadings. Another approach uses branching process
models of cascading failure to interpret the closeness to the critical loading in
terms of a failure propagation parameter A. We suggest a statistic for A that
could be applied before saturation occurs. The paper concludes with
suggestions for a wider research agenda for measuring the closeness to
criticality of a fixed power transmission network and for studying the complex
dynamics governing the slow evolution of a transmission network.



The Impact of Various Upgrade Strategies on the Long-Term Dynamics and
Robustness of the Transmission Grid

D. E. Newman, B. A. Carreras, V. E. Lynch, I. Dobson

Electricity Transmission in Deregulated Markets, conference at Carnegie Mellon
University, Pittsburgh PA USA, December 2004

(reprinted in section 6.7)

Abstract: We use the OPA global complex systems model of the power
transmission system to investigate the effect of a series of different network
upgrade scenarios on the long time dynamics and the probability of large
cascading failures. The OPA model represents the power grid at the level of DC
load flow and LP generation dispatch and represents blackouts caused by
randomly triggered cascading line outages and overloads. This model represents
the long-term, slow evolution of the transmission grid by incorporating the
effects of increasing demand and engineering responses to blackouts such as
upgrading transmission lines and generators. We examine the effect of increased
component reliability on the long-term risks, the effect of changing operational
margins and the effect of redundancy on those same long-term risks. The
general result is that while increased reliability of the components decreases the
probability of small blackouts, depending on the implementation, it actually can
increase the probability of large blackouts. When we instead increase some types
of redundancy of the system there is an overall decrease in the large blackouts
with a concomitant increase of the smallest blackouts. As some of these results
are counter intuitive these studies suggest that care must be taken when making
what seem to be logical upgrade decisions.

Risk assessment in complex interacting infrastructure systems

D. E. Newman, B. Nkei, B. A. Carreras, I. Dobson, V. E. Lynch, P. Gradney
Thirty-eighth Hawaii International Conference on System Sciences, Hawaii,
January 2005

(reprinted in section 6.8)

Abstract: Critical infrastructures have some of the characteristic properties of
complex systems. They exhibit infrequent large failures events. These events,
though infrequent, often obey a power law distribution in their probability
versus size. This power law behavior suggests that ordinary risk analysis might
not apply to these systems. It is thought that some of this behavior comes from
different parts of the systems interacting with each other both in space and time.
While these complex infrastructure systems can exhibit these characteristics on
their own, in reality these individual infrastructure systems interact with each
other in even more complex ways. This interaction can lead to increased or
decreased risk of failure in the individual systems. To investigate this and to
formulate appropriate risk assessment tools for such systems, a set of models are
used to study to impact of coupling complex systems. A probabilistic model and
a dynamical model that have been used to study blackout dynamics in the power
transmission grid are used as paradigms. In this paper, we investigate changes in



the risk models based on the power law event probability distributions, when
complex systems are coupled.

Understanding the effect of risk aversion on risk

U. Bhatt, D.E. Newman, B.A. Carreras, I. Dobson

Thirty-eighth Hawaii International Conference on System Sciences, Hawaii,
January 2005

(reprinted in section 6.9)

Abstract: As we progress, society must intelligently address the following
question: How much risk is acceptable? How we answer this question could
have important consequences for the future state of our nation and the dynamics
of its social structure. In this work, we will elucidate and demonstrate using a
physically based model that the attempt to eliminate all thinkable risks in our
society may be setting us up for even larger risks. The simplest example to
illustrate this point is something with which we are all familiar and have known
from the time we were very young. When children burn their finger on a hot
item they learn the consequences of touching fire. This small risk has taught the
child to avoid larger risks. In trying to avoid these small risks as well as larger
risks, one runs the dual danger of not learning from the small ones and of
having difficulty in differentiating between large and small risks. We will
illustrate this problem with a series of social dynamics examples from the
operation of NASA to network operation and then make an analogy to a
complex system model for this type of dynamics. From these results,
recommendations will be made for the types of risk responses that improve the
situation versus those that worsen the situation. In order to progress, society
has to recognize that accidents are unavoidable and therefore an intelligent risk
management program must be implemented aimed toward avoiding or
reducing major accidents. It is not possible to avoid all risk but it is better to
avoid the greater risk situations for society.

Branching process models for the exponentially increasing portions of
cascading failure blackouts

I. Dobson, B.A. Carreras, D.E. Newman

Thirty-eighth Hawaii International Conference on System Sciences, Hawaii,
January 2005

(reprinted in section 6.10)

Abstract: We introduce branching process models in discrete and continuous
time for the exponentially increasing phase of cascading blackouts. Cumulative
line trips from real blackout data have portions consistent with these branching
process models. Some initial calculations identifying parameters and using a
branching process model to estimate blackout probabilities during and after the
blackout are illustrated.



In addition to the conference papers listed above, which were all presented, the
following presentations were made:

Blackout mitigation assessment in power transmission systems
B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson
36th Hawaii International Conference on System Sciences, Hawaii, January 2003.

A probabilistic loading-dependent model of cascading failure and possible
implications for blackouts

I. Dobson, B.A. Carreras, D.E. Newman

36th Hawaii International Conference on System Sciences, Hawaii, January 2003.

Cascading failure,
I. Dobson, B.A. Carreras, D.E. Newman
Talk at the University of Liege, Belgium March 2003

Cascading failure,
I. Dobson, B.A. Carreras, D.E. Newman
Talk at Imperial College, London England March 2003

Cascading failure,
I. Dobson
Brief presentation at press conference organized by Wisconsin Public Utility

Institute, Madison WI, August 2003

Cascading failure and the risk of large blackouts,

I. Dobson, B.A. Carreras, D.E. Newman

Talk at UMIST, University of Manchester Institute for Science and Technology,
Manchester, England, September 2003

Cascading failure and catastrophic risk in complex systems,

I. Dobson, B.A. Carreras, D.E. Newman

Invited talk at Institute for Asset Management Workshop, Birmingham, England,
September 2003

Cascading failure and the risk of large blackouts,
I. Dobson, B.A. Carreras, D.E. Newman,
Talk to Wisconsin Public Service Commission, Madison WI, September 2003

Cascading failure and the risk of large blackouts,

I. Dobson, B.A. Carreras, D.E. Newman,

Talk to Graduate student seminar course, Electrical and Computer Engineering
Department, University of Wisconsin, Madison WI, October 2003

Cascading failure, the risk of large blackouts, criticality and self-organization
I. Dobson, B.A. Carreras, D.E. Newman,

Talk to Plasma Physics seminar, University of Wisconsin, Madison WI, October
2003



Cascading failure, criticality and the risk of large blackouts,

I. Dobson, B.A. Carreras, D.E. Newman,

Talk to Systems group seminar, Electrical and Computer Engineering
Department, University of Wisconsin, Madison WI, October 2003

Cascading failure, the risk of large blackouts, criticality and self-organization
I. Dobson, B.A. Carreras, D.E. Newman,

Talk to Chaos and Complex Systems seminar, University of Wisconsin, Madison
WI, October 2003

Criticality and risk of large cascading blackouts
I. Dobson, B.A. Carreras,
Presentation at CERTS review meeting, Washington DC January 2004

Cascading failure analysis
I. Dobson, B.A. Carreras, D.E. Newman,
Presentation to L.R. Christensen Associates, Madison WI April 2004

Cascading failure analysis
I. Dobson, B.A. Carreras, D.E. Newman,
Presentation to Alliant Energy, Madison WI April 2004

Cascading failure analysis and criticality
R. Camfield, I. Dobson
Presentation to a major utility, May 2004.

Cascading failure propagation and branching processes

I. Dobson, B.A. Carreras, D.E. Newman,

Presentation to Silicon Graphics Inc and Hydro-Quebec TransEnergie, Madison
WI June 2004

Cascading failure analysis

I. Dobson, B.A. Carreras, D.E. Newman,

Lecture at EEI Market Design & Transmission Pricing School
Madison, Wisconsin, July 2004

A preliminary coupled model of electricity markets and cascading line
failures in power transmission systems

D. Berry,

Student Undergraduate Laboratory Internship poster session

Oak Ridge, Tennessee, August 2004

Criticality and risk of large cascading blackouts
I. Dobson, B.A. Carreras, D.E. Newman,
Presentation at PSerc Industry Advisory Board meeting, August 2004



The study of cascading failure in complex systems

B. Nkei, B.A. Carreras, V.E. Lynch,

2004 Virginia Tech Symposium for Undergraduate Research in Engineering
Blacksburg, Virginia, October 2004

Cascading failures in coupled systems

B. Nkei, V. E. Lynch, B. A. Carreras,

71st Annual Meeting of Southeastern Section of the American Physical Society,
Oak Ridge, Tennessee, November 2004

Blackouts

L. Dobson. 8 lectures (last quarter of the course) in Fall 2004 graduate course at
University of Wisconsin: ECE 905 Special topics in Electric power system:
operation, markets, reliability, and blackouts; applications of optimization,
markets, reliability and self-organized criticality to electric power transmission
networks. Students from electrical engineering and policy attended.

http:/ / eceserv0.ece.wisc.edu/~dobson/ece905.html

I. Dobson was the organizer and chair of a Special session on Probabilistic
assessment of cascading events and blackouts at the Eighth International
Conference on Probability Methods Applied to Power Systems, Ames Iowa,
Sept. 2004. This session brought together most of the international researchers
in this emerging area.



3.5 NEWSPAPER AND MEDIA

There was considerable interest from the media in this project immediately
following the August blackout. Considerable time was spent talking to the
media, providing explanations, background and quotes. While some of the
articles reflected general information, other articles (title in bold face) cited
research results from the project. The articles and radio and TV contacts are
listed below; most are available at

http:/ / eceserv0.ece.wisc.edu/~dobson/complexsystemsresearch.html.

Why the lights went out
Jonathan Kay, National Post, August 16 2003

“Last December, four U.S. scientists published a paper in the Journal Chaos
entitled Critical points and transitions in an electric power transmission model
for cascading failure blackouts. "Detailed analysis of large blackouts has shown
that they involve cascading events in which a triggering failure produces a
sequence of secondary failures that lead to blackout of a large area of the grid,"
the authors found. They presciently concluded that "large blackouts are much
more likely than might be expected from [conventional statistical analysis]" and
are "suggestive of a complex system operating close to a critical point."

At 4:10pm on Thursday, Ontario and seven states hit that "critical point." Within
seconds, workers in New York City, Toronto and thousands of other
communities found themselves staring at blank computer screens. Many were
forced to walk home in sticky weather -- generally to dark, uncomfortably hot
homes. Some are still without power as of Saturday morning. Their only
consolation is that the biggest power outage in North American history
evidently had nothing to do with terrorism.”

How a butterfly's wing can bring down Goliath.
Chaos theories calculate the vulnerability of megasystems
Keay Davidson, San Francisco Chronicle, August 15 2003

This was a first world blackout
Chris Suellentrop, Slate magazine, August 15 2003

Wisconsin company believes blackout originated in Lansing, Mich.
Associated Press, Star Tribune, August 15 2003

David Newman appeared on NPR radio KUAC FM, August 27 2003
Ian Dobson appeared on ABC Nightline, August 18 2003

Energy scientist studies blackout triggers
Pat Daukantas, Government Computer News, August 22 2003



Blackout was no surprise to UAF professor
Ned Rozell, Anchorage Daily News, September 7 2003

The chaos behind the wall socket
Ned Rozell, Fairbanks Daily News-Miner, September 7 2003

Getting a grip on nation's grid grind
R. Cathey Daniels, Oak Ridger, September 16, 2003

Californians work to predict grid-crashing
Ian Hoffman, Oakland Tribune, August 25 2003

Set of rules too complex to be followed properly
James Glanz and Andrew Refkin, New York Times, August 19 2003

Elusive force may lie at root of blackout
Richard Perez-Pena and Eric Lipton, New York Times, September 23 2003

What's Wrong with the Electric Grid?
Eric Lerner, Industrial Physicist, November 3 2003

Quick response is key in emergencies
Tom McGinty, NewsDay, November 9 2003

L'energia ha un punto critico
Donata Allegri, Ecplanet

The power grid: Fertile ground for math research
Sara Robinson, SIAM News, Volume 36, Number 8, October 2003

Black-out: cause e mezzi per prevenirli
Carlo Alberto Nucci e Alberto Borghetti, Rivista ENERGIA, n. 3, pp. 20-29, 2003

The power grid as complex system,
Sara Robinson, SIAM News, Volume 36, Number 10, December 2003

The unruly power grid,
Peter Fairley, IEEE Spectrum August 2004

Remember last year's big blackout? Get ready for another one
Stephen Strauss, The Globe and Mail, August 14, 2004



3.6 PLAN OF FUTURE WORK

This section presents a longer term plan of work that explains how the project is
directed towards monitoring tools to be applied to the real power system.

3.6.1 Project Goal

Contribute to transmission system reliability by understanding large, cascading
failure blackouts and providing tools for analyzing and monitoring their risk. In
particular, the project will identify the threshold that leads to increased risk of
cascading failure, express this threshold in terms of realistic power system
parameters and develop monitoring tools and criteria to be applied in real power
transmission systems.

3.6.2 Benefits

The main long-term benefit is to monitor and reduce the likelihood of large-scale
blackouts in the United States by the use of operational criteria derived from the
results of this project.

3.6.3 Technical approach

We will use a hierarchy of models that will include the CASCADE and OPA
models and their extensions to be developed as needed. The CASCADE model is
probabilistic model for cascading failures that gives a simple characterization of
the transition from an isolated failure to a system-wide collapse as system
loading increases. At the present funding level, this project will require funding
for about three to four years. To reach this goal we need to achieve the following
objectives:

1)  Using the OPA model we must thoroughly understand the loading
threshold that causes system-wide blackouts. We will compare the
probabilistic CASCADE model, where this threshold is easy to identify,
with the dynamical OPA model. This dynamical model incorporates the
structure of a network, and a linear programming (LP) approach is used to
find instantaneous solutions to the power demand. In such a model, the
threshold to system-wide blackouts is not obvious, and its understanding
is the first step in the path toward application to realistic systems. There are
several potential ways of characterizing the threshold and we are
investigating them. That is, we need to identify the key measurements to
be carried out on the power system that will provide information on the
closeness to the criticality threshold. In particular we need to test and refine
metrics for monitoring closeness to criticality such as the branching process
failure propagation parameter A, averagenormalized totalload transfer
for a failing line, and the loading margin to critical loading.

2)  Determine the secure operating conditions with respect to cascading
failure. We will use both models in this study. We have to determine how
close to the threshold it is possible to operate.



3)

4)

5)

6)

Studies of the impact of the slow time evolution and the self-organizing
forces will be conducted on simpler models. They will provide guidance on
the validity of the probabilistic criteria when translated to the self-
organized system.

Based on the previous results we have to develop criteria and
measurements that are applicable to real system.

We will explore the development of software tools to monitor and assess
the security of the power system with respect to large cascading failures.
First we will test these tools in simulated operation to assess their
capabilities and limitations

Implement the criteria and tools developed so that is possible to monitor
power system status and risk trade-offs and to be able to do “what-if”
analysis. We will look for collaborations within CERTS in developing
practical tools to carry out this task.

3.6.3 Plan for next step in OPA development

There are several power system cascading failure models with varying modeling
emphases as summarized in the following table:

OPA hidden Manchester CMU TRELSS
failure
overloads X X X X X
redispatch X X X X
hidden failure X X
protection group X
AC X X
Gen trip X
voltage collapse X X
transient stability X
under freq load X
shed
islanding X X X
load increase and X
grid upgrade
approx. max 400 300 1000 2500 13000
number of buses
reference [Carreras | [Chen O5] | [Kirschen 04] | [LiaoCMUO4] | [TRELSS]
CHAOSO02]

Note that OPA is the only code that can currently address the load increase and
grid upgrade complex dynamics.

The overall plan for the next step in development of OPA is to add to OPA the
most straightforward and significant enhancements first and to seek to
collaborate with the groups running the other models to gain quick access to
features that would require substantial development resources. Further steps
can be evaluated once this first step is undertaken and some sense of the




importance of the various enhancements for cascading failure analysis has been
gained.

The most promising enhancements to OPA to be first considered are then

* Representation of hidden failures in OPA
* Investigating the modeling of generator trips
* Improving the input to handle a standard format power system file

The AC load flow and the approximation of voltage and transient stability issues
can be postponed in OPA in this first step and first pursued in collaboration with
existing codes.

Significant progress has been made in pursuing and establishing the
collaborations mentioned above. We have already successfully collaborated
within CERTS with the hidden failure model developed at Cornell University
[Chen05]. The collaboration with the University of Manchester has a paper in
progress to be submitted to the 2005 PSCC conference. We are starting to
collaborate with Carnegie-Mellon University (CMU) (and Iowa State) under
PSerc to investigate their model. Strong interest has been expressed by PSerc
industry members. Our collaboration with a consulting company has already
approached a major utility to explore possibilities of running TRELSS.



4 DELIVERABLES AND BUDGET
4.1 DELIVERABLES

The deliverables for this project are a one-year report and this final report and
the documented information in the conference and journal papers listed in
section 3.4.

4.2 BUDGET

Benjamin A. Carreras (ORNL)
$65,000 for the year beginning Jan 1, 2003.
$60,000 for the year beginning Jan 1, 2004.

Ian Dobson (PSERC Wisconsin)
$55,000 for the year beginning Jan 1, 2003.
$60,000 for the year beginning Jan 1, 2004.
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Abstract

Networked infrastructures operated under highly loaded
conditions are vulnerable to catastrophic cascading fail-
ures. For example, electric power transmission systems
must be designed and operated to reduce the risk of
widespread blackouts caused by cascading failure. There
is a need for analytically tractable models to understand
and quantify the risks of cascading failure. We study a
probabilistic model of loading dependent cascading failure
by approximating the propagation of failures as a Poisson
branching process. This leads to a criticality condition for
the failure propagation. At criticality there are power tails
in the probability distribution of cascade sizes and conse-
quently considerable risks of widespread catastrophic fail-
ure. Avoiding criticality or supercriticality is a key ap-
proach to reduce this risk. This approach of minimizing the
propagation of failure after the cascade has started is com-
plementary to the usual approach of minimizing the risk of
the first few cascading failures. The analysis introduces a
saturating form of the generalized Poisson distribution so
that supercritical systems with a high probability of total
failure can be considered.

1. Introduction

Networked infrastructures such as electric power trans-
mission systems are vulnerable to widespread cascading
failures when the systems are highly loaded. Since mod-
ern society depends on large infrastructures, catastrophes in
which failures propagate to most or all of the system are of
concern. For example, blackouts of substantial portions of
the North American power system east or west of the Rocky
Mountains have a huge cost to society, as demonstrated in
2003 and 1996 respectively. There is a need for analytically
tractable models to understand and quantify the risks of cas-
cading failure so that networked systems can be designed
and operated to reduce the risk of catastrophic failure.

Analyses of 15 years of North American blackout data

carrerasba@ornl.gov

ffden@uaf.edu

show an empirical probability distribution of blackout size
which has heavy tails and evidence of power law depen-
dence in these tails [24, 2, 11, 3, 6]. The exponent of the
power tail is roughly estimated to be in the range —2 to —1.
These data show that large blackouts are much more likely
than might be expected from a distribution of blackout size
in which the tails decay exponentially. Simulation mod-
els of cascading blackouts show similar power tails and the
power tails have been attributed to the nature of the cascad-
ing process [19,9, 7].

Because of protection and appropriate design and oper-
ational procedures, it is very rare for power transmission
components to fail in the sense of the component break-
ing. However, it is routine for these components to be tem-
porarily removed from service by protection equipment and
the outaged or tripped component is then failed in the sense
that it is temporarily not available to transmit power. More-
over there are sometimes misoperations or mistakes in pro-
tection, communication and control systems or operational
procedures or sometimes the power system is operated un-
der conditions that could not be anticipated in the original
design settings or procedures. In the context of power trans-
mission systems, the term “failure” as used in this paper
should be understood in this broad and nuanced sense.

Notable general features of power transmission systems
are the large number of components, the increased prob-
ability of component failure and interaction at high load,
and the numerous, varied and widespread interactions be-
tween components. Large blackouts typically involve long
sequences of component failures. Many of the interactions
are rare, unanticipated or unusual, not least because of en-
gineering efforts to design and operate the system so as to
avoid the most common failures and interactions. Although
we use electric power transmission system blackouts as the
motivating example in this paper, these general features ap-
pear in other networked infrastructures so that it is likely
that the ideas apply more generally.

One natural way to study cascading failure is to con-
sider the failures propagating probabilistically according to
a Galton-Watson-Bienaymé branching process [23]. For
example, simple assumptions lead to a Poisson branching



process that has the total number of components failed dis-
tributed according to the generalized Poisson distribution
[17,15].

On the other hand, the CASCADE model of probabilistic
cascading failure [20] has the following general features:

1. Multiple identical components, each of which has a
random initial load and an initial disturbance.

2. When a component overloads, it fails and transfers
some load to the other components.

Property 2 can cause cascading failure: a failure addition-
ally loads other components and some of these other com-
ponents may also fail, leading to a cascade of failure. The
components become progressively more loaded and the sys-
tem becomes weaker as the cascade proceeds.

Both the Poisson branching process and CASCADE can
exhibit criticality and power tails in the probability distribu-
tion of the number of failed components.

We begin the paper by reviewing standard results on
branching processes and the generalized Poisson distribu-
tion and then consider the implications of these results for
the risk of load-dependent cascading failure. A saturating
form of the generalized Poisson distribution is introduced to
allow study of the transition through criticality in a system
with a large but finite number of components. We review the
CASCADE model of cascading failure and then show how
CASCADE can be approximated by the saturating general-
ized Poisson distribution. Then we discuss the implications
of the approximation for analyzing CASCADE and under-
standing cascading failure in blackouts.

2. Review of branching processes

This section reviews standard material on Galton-
Watson-Bienaymé branching processes [23] and general-
ized Poisson distributions [17, 15] as expressed in terms of
cascading failures.

2.1. Generalities

We first consider an infinite number of system compo-
nents. All components are initially unfailed. Component
failures occur in stages with M; the number of failures in
stage <. We first assume an initial disturbance that causes
one failure in stage zero so that My = 1. This first failure
is considered to cause a certain number of failures M in
stage 1. M is determined according to a probability distri-
bution with generating function E[t}1] = f(¢) and mean
A. In subsequent stages, each of the M; failures in stage 4
independently causes a further number of failures in stage
i + 1 according to the same distribution f(s). That is, the

kth failure in stage ¢ causes Mz(i)l failures in stage ¢ + 1 and
M, = Mi(-il-)l + Mi(i)l et Mi(%i) (1)

where Mi(i)l, Mi(_%_)l, cee Ml(f;) are independent. This in-
dependence is a plausible approximation in a system with
many components and many component interactions so that
series of failures propagating in parallel can be assumed not

to interact. The generating function of M}, is

E[tM] = f(F(f(f(0)-)) = P ) )

and the mean E[M}] = A\*. If at any stage k, M}, = 0, then
zero elements fail for all subsequent stages and the cascad-
ing process terminates.

There are three cases, depending on the mean A of the
number of failures caused by each failure in the previous
stage. In the subcritical case A < 1, a finite number of
components will fail. In the supercritical case A > 1, either
a finite or infinite number of components can fail and the
number of failures in each stage tends to zero or infinity
respectively. The critical case is A = 1.

We are most interested in the distribution of the total
number of failures

M = Z M, 3)
k=0

The generating function of M is F(t) = E[t™] and it sat-
isfies the recursion F'(t) = ¢t f(F(t)).

2.2. Universality of the critical exponent

Under mild conditions on f, for the critical case A =
1, PIM = r] ~ r=2 as r — oo [26, 23]. That is, the
distribution of the total number of failures of a branching
process at criticality has a universal property of a power tail
with exponent —%. The details are in Otter’s theorem [26]:

Theorem 1 Suppose that P[M; = 0] > 0 and that there
is a point a in the interior of the circle of convergence of
f for which f'(a) = f(a)/a. (This is true, for example, if
1 < X< ooorif f(s) is entire or if f'(p) = oo, where p is
the radius of convergence of f. The point (a, f(a)) is then
the point where the graph of f, for real positive s, is tangent
to a line through the origin. Let o« = a/ f(a) and let d be
the largest integer such that P[M, = r] # 0 implies that r
is a multiple of d, r = 1,2, .... If r — 1 is not divisible by d,
then P[M = r| = 0, while if r — 1 is divisible by d, then

a P _3 3
P[M:r]:d(m> a "r z—i—O(oz T )

r— 00 4)

Notice that o > 1, the equality holding if and only if A = 1.
Also d =1 when P[My =r] #0forr=1,2,...



2.3. Branching generated by a Poisson distribution

If, in addition to the independence assumptions above,
the failures propagate in a large number of components so
that each failure has a small uniform probability of inde-
pendently causing each failure in a large number of other
components, then the distribution of failures caused by each
failure in the previous stage can be approximated as a Pois-
son distribution [17] so that

)\7",
= e m=0,12,.. (5

fﬂﬂ4i3= Wﬂ ml

f(t) — ek(t—l) (6)

The distribution of the total number of failures becomes

rA

PIM =] = (rA) 1S

T 0<ASL (@)

which is known as the Borel distribution.

2.4. A probabilistic initial disturbance and the gen-
eralized Poisson distribution

If we neglect the zero stage that has one failure, and con-
sider the failures starting with stage 1, then (5) gives a distri-
bution of initial failures according to a Poisson distribution
with mean .

However, we distinguish the initial failures that are
caused by some initial disturbance from the subsequent
propagation of failures internal to the system. We want to
represent the initial disturbance by its own probability dis-
tribution. This can be done by specifying a probability dis-
tribution for My, the number of failures in stage zero. If the
initial failures are Poisson distributed with mean 6 so that

P[]\/fozm]Z%e_‘9 ,m=0,1,2,... (8)
fot) = Pt ©)

then the generating function of M;, becomes fo(f(*)(t) and
the distribution of the total number of failures becomes

efrAfa
PM=r]=0(r\+ 0)’“71—'
7!
,020,0<A<1 (10)

which is the generalized (or Lagrangian) Poisson distribu-
tion introduced by Consul and Jain [17, 12, 15]. The prob-
ability generating function of (10) is

E[sM] = ¢?®= where ¢ is the function of s satisfying
t = sert=1) (11)

The mean of the generalized Poisson distribution (10) is

EM] = — (12)

The generalized Poisson distribution is usually restricted to
parameters such that A < 1 to avoid the supercritical case
in which there is a finite probability of M infinite.

3. Implications for risk of load-dependent cas-
cading failure

The following sections show how a model of loading de-
pendent cascading failure can be approximated as a branch-
ing process. To motivate this topic, this section supposes
that cascading failure can be treated as a branching process
and discusses some general implications of the branching
results in Section 2 for risk analysis and mitigation of cas-
cading failure.

Suppose that the system is at criticality (A = 1) so that
the probability distribution of the total number of failures
M follows a power law with exponent —%. Since risk R is
the product of probability and cost,

R(m) = P[M =m]C[m] ~m~3C[m]  (13)

First assume in (13) that the cost C'(m) is proportional to
the total number of failures m. (This is a conservative es-
timate in applications such as blackouts; even if the direct
costs are proportional to the blackout size and the total num-
ber of failures, the indirect costs can be very high for large
blackouts [1].) Then R(m) ~ m™2m = m~z. This gives
a weak decrease in risk as the number of failures increase,
which means that the risk of cascading failure includes a
strong contribution from large cascades. Moreover, if in-
stead cost increases according to C[m] ~ m® where o > %,
then (13) implies that the risk of large cascades exceeds that
of small cascades, despite the large cascades being rarer.

Consider a general load dependence for component fail-
ure and interaction. We assume that system components are
more likely to fail and more likely to cause other component
failures when load increases. It is reasonable to assume that
at zero load \ < 1, since a system design with a significant
risk of cascading failure at zero load is unlikely to be feasi-
ble when operated at normal loads. Moreover, if the system
is operated at an absurdly high load at which all compo-
nents are at their limits, then failure of any component will
on average cause many other components to fail and then
A > 1. We may also assume that A is an increasing and
continuous function of load. Then there is a critical load for
which A = 1 and the branching process is critical and the
risk is governed by (13). The risk will be even higher for
A> 1

Thus a simple criterion for avoiding the high risk of cas-
cading failure associated with A > 1 with some margin de-
termined by a choice of A\ < 11is

design and operate system so that A < Apa < 1 | (14)




Although this is a simple criterion, translating it to appli-
cable design and operational criteria is a substantial task.
Moreover, applying the criteria (14) generally requires the
system to be operated with limited throughput. For exam-
ple, in electric power transmission systems, the loading of
transmission lines and other system components would be
limited. Thus limiting the risk of cascading failure using
(14) will have an economic cost. The dynamics and diffi-
culties of managing this tradeoff should not be neglected.

One approach to limiting cascading failure is to describe
the most likely sequences of cascading failures starting
from the initiating failures and design and operate the sys-
tem to reduce their probability. This standard approach is
sensible and can reduce risk [22, 25, 10]. However, in large
interconnected and interdependent systems there is a com-
binatorial explosion of possibilities. It is often impractical
to envisage and to quantify and compute probabilities for
all but the most likely or apparent of these cascading se-
quences. A large number of rare and hard to anticipate in-
teractions may have to be neglected [27].

Criterion (14) suggests a different and complementary
approach that focusses on limiting the average propagation
of failures after a cascade is started. A is the expected num-
ber of failures consequent upon a single failure. We sug-
gest that estimation of average values of A\ may be feasible
using simulation [8] or otherwise and that the dependence
of X\ on load and system design could be determined to al-
low (14) to be implemented. Perhaps the simplifications in
this approach could allow the contributions to A\ from nu-
merous but rare interactions to be accounted for more read-
ily. There are a number of problems in establishing this
approach. Two of these problems are

1. Branching processes usually assume an infinite num-
ber of components so that there can be an infinite num-
ber of failures in the supercritical case. This is not re-
alistic when considering the transition from subcritical
to supercritical.

2. Can loading dependent cascading failure be well ap-
proximated as a branching process?

Section 4 addresses problem 1 with a saturating branch-
ing process and the rest of this paper addresses problem 2
by showing how the CASCADE model of load-dependent
cascading failure can be approximated by the saturating
branching process.

4. Saturation due to finite system size

In our application we have a large but finite number n of
components and we need to introduce a saturation or trun-
cation of the Poisson branching process. Let

N = min{n — 1, integer part of (n — 0)/A\} (15)

Then the process evolves in the same way as the process
with an infinite number of components when the total num-
ber of failures does not exceed N. If the total number
of failures exceeds IV, then it assumed that all n com-
ponents fail and the process ends. If the parameters are
such that N < n — 1, this implies that it impossible for
N +1,N +2,...,n — 1 components to fail. The saturation
(15) is chosen so that the saturating model can be a good
approximation to CASCADE and this is justified in subsec-
tions 6.1 and 6.2.

The standard result (10) above can be modified as fol-
lows to obtain the saturating model: The generating func-
tion G(t) for the total number of failures remains valid to
order N. Write GIVI(t) for the terms up to and including
order N of G(t). Then GIN)(t) generates the probabilities
of the total number of failures r for r < N. However, the
sum of the probabilities generated by GV () is GINI(1)
and GIN](1) < 1. The probability generating function G/(t)
for the saturating model can be obtained by making the
probability of n failures equal to 1 — GINI(1):

G(t) = GN(1) + (1 — GV (1)) (16)
N —U—=r
=> 00+ M)T‘lei—'AtT + (1 = G (1))t

A7)

The corresponding probability distribution is:

Definition: g(r,0, \,n) is the probability that » compo-
nents fail in the saturating generalized Poisson distribution
model with initial disturbance mean failures 6, cascading
mean failures A\, and n components. For 6 < 0,

g(r,0,\,n) = 1; r=0 (18)
g(r,0,\;n) = 0; r>0 (19)
For 6§ > 0,
e—rk—e
9(7’,9,)\,”) = Q(T)‘+0)T_l—|
7!
; 0<r<(n—60)/x r<n(20)
g(r,0,A,n) =0; (n—0)/A<r<mn, r>0Q21)
n—1
g(n,0,x,n) = 1= g(s,6,\,n) (22)
s=0

The saturating form of the generalized Poisson distribution
(20-22) limits the total number of failures to n even in the
supercritical case and extends the range of parameters of the
generalized Poisson distribution (10) to allow A > 1.

There are other ways of normalizing or truncating the
cascading process to avoid infinite quantities in the super-
critical case. For example, one can normalize the number of
failures M, at stage k by their mean ¥ [23] or one can con-
sider truncations motivated by not observing data in some



ranges [17, 14]. However, these methods are not suited to
our application.

The mean number of failures in the saturating general-
ized Poisson distribution is

N e 0
E[M] = ;mw + A"t S (- GMN(1))
(23)
5. Review of CASCADE

This section summarizes the CASCADE model of prob-
abilistic load-dependent cascading failure and the saturating
quasibinomial distribution from [20].

The CASCADE model has n identical components with
random initial loads. For each component the minimum ini-
tial load is L™ and the maximum initial load is L™&X,
For j=12,...,n, component j has initial load L; that is
a random variable uniformly distributed in [L™", [max],
Ly, Ly, ---, L, are independent.

Components fail when their load exceeds L. When a
component fails, a fixed amount of load P is transferred to
each of the components.

To start the cascade, we assume an initial disturbance
that loads each component by an additional amount D.
Other components may then fail depending on their initial
loads L; and the failure of any of these components will
distribute an additional load P > 0 that can cause further
failures in a cascade.

Now we define the normalized CASCADE model. The
normalized initial load ¢; is

Lj _ [ min
gﬂ - [, max _ [ min (24)
Then /; is a random variable uniformly distributed on [0, 1].
Let
P D + [max _ Lfail

b= [ max _ Lmin’ d= [ max _ [ min

(25)

Then the normalized load increment p is the amount of load
increase on any component when one other component fails
expressed as a fraction of the load range L™2* — L™ The
normalized initial disturbance d is a shifted initial distur-
bance expressed as a fraction of the load range. Moreover,
the failure load is £; = 1

The saturating quasibinomial distribution is given by:

Definition: f(r,d,p,n) is the probability that » compo-
nents fail in the CASCADE model with normalized initial
disturbance d, normalized load transfer amount p, and n
components. For d < 0,

f(r,d,p,n)
f(rr’d’p7n) =

1; r=20 (26)
; r>0 27

Ford > 0,

o) = (1) dlpet-dy -
. 0<r<(-d/p.r<n 29

f(ryd,p,n) =0; (1-d)/p<r<n,r>0 (29)
n—1

f(n7d7pan) = 1_Zf(svdvpan) (30)
s=0

If np+d < 1,(28) and (30) reduce to the quasibinomial dis-
tribution introduced as an urn model by Consul [13]. Thus
(28-30) extend the quasibinomial distribution to parame-
ters with np +d > 1. np + d > 1 corresponds to highly
stressed systems with a significant probability of all compo-
nents failing.

The distribution (26-30) can also be expressed using a
saturation function ¢ as follows [21]:

f(r,d,p,n) =

(1) eta sy - =y,
T:O,l,...,n—l (31)

n—1
lef(s,d,p,n), r=mn
s=0
where
0;2<0
plx)=< z;0<z<1 (32)
l;z2>1

Note that (31) uses 0° = 1 and 0/0 = 1 when needed.

6. Approximating CASCADE as a branching
process

We first approximate the distribution of the total number
of failures in CASCADE by the distribution of total number
of failures in a saturating Poisson branching process. Then
we show how the cascading failures in CASCADE can be
approximated stage by stage by a Poisson branching pro-
cess.

6.1. Approximating the distribution of the total
number of failures

The total number of failures in the CASCADE model
is distributed according to the saturating quasibinomial dis-
tribution (26)-(30). We prove that the saturating quasibi-
nomial distribution can be approximated by the saturating
generalized Poisson distribution (18)-(22).

Letn — ocoand p — 0 and d — 0 in such a way
that A = np and @ = nd are fixed. Then the appendix



[17] shows that the quasibinomial distribution tends to the
generalized Poisson distribution. Hence for large n and for
0<r<(1-d)/p=(n—0)/\ (28) may be approximated
by (20). (1 — d)/p = (n — 0)/X also implies that (29) may
be replaced by (21). Then the preceding results imply that
(30) tends to (22).

6.2. Branching process obtained from CASCADE

This subsection informally shows how failures in CAS-
CADE arise in stages approximately as stages of a satu-
rating branching process. The CASCADE model produces
failures in stages ¢ = 0,1, 2, ... where M is the number of
failures in stage ¢. The following is a normalized version of
the algorithm for CASCADE that can be derived from [20].

Algorithm for normalized CASCADE model

0. All n components are initially unfailed and have initial
loads ¢4, 45, - - -, £,, determined as independent random
variables uniformly distributed in [0, 1].

1. Add the initial disturbance d to the load of component
j foreach j =1, ..., n. Initialize the stage counter ¢ to
Zero.

2. Test each unfailed component for failure: For j =
1,...,n, if component j is unfailed and its load > 1
then component j fails. Suppose that M; components
fail in this step.

3. If M; = 0, stop; the cascading process ends.

4. If M; > 0, then increment the component loads ac-
cording to the number of failures M,;: Add M;p to the
load of component j for j = 1, ..., n.

5. Increment the stage counter % and go to step 2

It is convenient throughout to restrict mgq, mq,... to non-
negative integers and to write

Si=mg+miy+...+m; (33)

Consider the end of step 2 of stage ¢ > 1 in the CAS-
CADE algorithm. The failures that have occurred are My =
mo, M1 = my,...,M; = m;, but the loads have not yet
been incremented by m;p in the following step 4. Let

m;p
Qi1 (b(l —d— Si—lp) (34)

where ¢ is the saturation function defined in (32).

Suppose that d + s;_1p < 1. Then the loads of the
n — s; unfailed components are uniformly distributed in
[d + s;—1p, 1]. This uniform distribution is conditioned on
the n — s; components not yet having failed. In the follow-
ing step 4, the probability that the load increment of m;p

causes one of the unfailed components to fail is «;; and
the probability of m;; failures in the n — s; unfailed com-
ponents is

P[Miy1 = mi1|M; = my, ..., My = mg| =
n—s; my S
( mit1 > i1 (1= vy
y M4 :0,1,...,71—52- (35)

and the generating function for (35) is
(1 + ai+1(t — 1))n75i (36)

Suppose that d 4+ s;_1p > 1. Then all the components must
have failed on a previous step and P[M; 1 = m;1|M; =
My, ..o, Mg = mg] = 1 for m;1; = 0 and vanishes oth-
erwise. In this case a;11 = 0 and (35) and (36) are again
verified.

Let nd = 6 and np = \. Then

Qi1 = ¢<7n 0 Si_1A> (37)

There are three cases:

(1) s;—1 > (n—0)/A. Then ;11 = 0, (36) evaluates to
1 and P[Mi+1 = O‘Ml = my;, ...,MO = mo} =1.Case lis
an already saturated case corresponding to all components
failing in stage ¢ — 1 or previous stages.

2)sic1 <(n—0)/Aand s; =m; +s;—1 > (n—0)/\.
Then «;11 = 1, (36) evaluates to t" % and P[M;;, =
n — 8;|M; = my, ..., Mo = mp] = 1. Case 2 is a saturating
case corresponding to all components failing in stage 7.

(3) s =m; +si—1 < (n—0)/\. Then

QL 1=
i n—@—si_l)\

Let n — oo and p — 0 so that np = . Since
(14 a1 (t—1)""% = ™MD agn - 0o (38)

we approximate (36) by
[n—s;—1]
( emm(t—n) +

{n—si <1 _ (emi}\(t_l))[nfsifﬂ (1)) (39)

That is, the approximation is

P[Mi+1 =mip1|M; =my, ..., My = mO] =

z)\ Mi+1 ]
%e*m")‘ ,miv1 =0,1,...n—s; — 1
Mit1:
n—s;—1 (ml/\)k (40)

, N
1-— Z 1 e ™ ,Mir1 =N — 8.

k=0
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Figure 1. Average number < r > of compo-
nents failed in CASCADE as a function of np
and nd for n = 100. Lines are contours of con-
stant <r>. White indicates < 10 failures and
black indicates > 90 failures.

According to (38), for fixed r, the approximation (39) be-
comes exact as n — oo. That is, the coefficient of ¢" in (39)
tends to the coefficient of ¢" in (36) as n — oo. However,
the approximation (39) is inaccurate for the coefficient of ¢"
whenr = n — s; orr is close ton — s;.

Since €A (51 = (AE=D)™ (39) or (40) is the dis-
tribution of the sum of m,; independent Poisson random
variables with rate A with saturation occurring when the to-
tal number of failures exceeds n. Thus we can consider
each failure as independently causing other failures in the
next stage according to a saturating Poisson process.

A similar approximation applies at stage zero. Suppose
that in step 2 of stage zero in the CASCADE algorithm there
are my failures due to the initial disturbance d. The proba-
bility that the load increment of d causes one of the compo-
nents to fail is ¢(d) and the probability of my failures in the
n components is given by:

( " ) H(d)™ (1 — o))" ™ (1)

mo

Let n — oo and d — 0 so that nd — 6. Then we approxi-
mate (41) by the saturating Poisson distribution

fmo
e ¥ mg =0,1,....,.n—1
mo!
P[MO = mo] = n—1 emo (42)
1-— e ? , Mg =N
m0!
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Figure 2. Average number < r > of compo-
nents failed in saturating generalized Pois-
son distribution as a function of \ and 6 for
n = 100. Lines are contours of constant <r>.
White indicates < 10 failures and black indi-
cates > 90 failures.

The approximations (40) and (42) show that the num-
ber of failures in each stage are, for large n and small p
and d, governed by a saturating Poisson branching process
with mean A = np, except that on the first step the mean
is @ = nd. The approximation does not necessarily imply
that concepts natural to the branching process translate di-
rectly to the CASCADE model. For example, each failure
in CASCADE may be attributed to load increases caused
by many previous failures, whereas it is natural to attribute
each failure in a branching process to a single previous fail-
ure.

The mean number of failures in the CASCADE and the
saturating generalized Poisson distribution as a function of
6 and A are compared in Figures 1 and 2. Scans correspond-
ing to load increase with d = p and # = )\ are compared in
Figures 3 and 4. Note the closeness of the approximation
for small and moderate r and the expected inaccuracy of
the approximation near r = n.

7. Discussion

Large power system blackouts typically involve a cas-
cading series of failures or outages in which the system
becomes weaker or more stressed as the cascade proceeds.
There are many ways in which failure or outage of a compo-
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Figure 3. CASCADE probability distributions
of total number of failures on log-log plot.
n = 1000. Note that the probability of 1000
components failing is 0.003 for np = 1, and
0.798 for np = 2.

nent can adversely affect other components and make their
failure more likely. For example, outage of a line can make
more likely the failure of other components via redistribu-
tion of load, relay or control system misoperation [28], tran-
sient phenomena, or operator or planning error. Moreover,
all these interactions generally become stronger as power
system loading is increased and the significant interactions
become more numerous. High loading tends to make in-
teractions more nonlinear, harder to conceive of in advance
and much more likely to cause further failures since mar-
gins are smaller. In the terminology of Perrow [27], highly
loaded power systems are more complex and tightly cou-
pled. The diversity of components and interactions in the
power system is highly simplified in the CASCADE model
to uniform components that interact in a uniform and sim-
ple way with all the other system components. The branch-
ing process model is even further abstracted in that compo-
nent failures cause other failures by an unspecified mech-
anism. While this paper does claim to capture salient fea-
tures of cascading blackouts in both of these simple models,
it should be acknowledged that substantial work is needed
to determine the detailed similarities and differences be-
tween these models and real blackouts via statistical mea-
surements and simulations. Estimating A from a simulation
of cascading outages is considered in [8]. The consequences
of nonuniform interactions between components or interac-
tions limited to a subset of other components also needs to
be examined in future work.

The CASCADE model captures the weakening of sys-
tem as the cascade proceeds and reproduces some qualita-
tive features of blackout size probability distributions ob-
served in blackout data and simulations [19, 9, 7]. Since
this paper shows that CASCADE is well approximated by
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Figure 4. Saturating generalized Poisson
probability distributions of total number of
failures on log-log plot. » = 1000. Note that
the probability of 1000 components failing is
0.025 for A = 1, and 0.797 for \ = 2.

a branching process and the saturating generalized Poisson
distribution, the saturating generalized Poisson distribution
also reproduces the same qualitative features of blackout
size probabilities.

The approximation of CASCADE by the branching pro-
cess allows the parameters of the two models to be related.
Thus

A=np 43)
nP

= Lex — puin “
Recall that in CASCADE, p is the normalized load transfer
amount and n is the number of components. (43) can be
used to reinterpret p = A/n in the branching process as the
probability that a component failure causes the failure of a
specific other component. This is an important interpreta-
tion in contexts in which there is a cascading dependency
between components that is not naturally expressed as an

increment in loading.

The criterion (14) for minimizing cascading failure can
be reexpressed using (43) as np < Apax. Then even if
p is very small, large n can cause cascading failure. This
suggests that numerous rare interactions can be equally in-
fluential in causing cascading failure as a smaller number of
likely interactions. More generally, one can speculate that
a design change that introduced a large number of unlikely
failure interactions (plausibly similar to large n) could make
cascading failure more likely, despite high reliability (low
p). It is conceivable that coupling infrastructures